A hagyományos oxiacetilén-, plazma- és egyéb vágási eljárásokkal összehasonlítva a lézervágás előnyei a gyors vágási sebesség, a keskeny rés, a kis hőhatású zóna, a hasított él jó függőlegessége, a sima vágóél és sokféle lézerrel vágható anyag. . A lézeres vágási technológiát széles körben alkalmazzák az autók, gépek, elektromosság, hardver és elektromos készülékek területén.
Mihail Misustyin orosz miniszterelnök utasítása szerint az orosz kormány 10 év alatt 140 milliárd rubelt különít el a világ első új szinkrotron lézergyorsítójának, a SILA-nak a megépítésére. A projekthez három szinkrotronsugárzási központ megépítése szükséges Oroszországban.
A világ első félvezető lézerének 1962-es feltalálása óta a félvezető lézer óriási változásokon ment keresztül, nagymértékben elősegítve más tudományok és technológiák fejlődését, és a huszadik század egyik legnagyobb emberi találmányaként tartják számon. Az elmúlt tíz évben a félvezető lézerek gyorsabban fejlődtek, és a világ leggyorsabban növekvő lézertechnológiájává váltak. A félvezető lézerek alkalmazási köre lefedi az optoelektronika teljes területét, és napjaink optoelektronikai tudományának alaptechnológiájává vált. A kis méret, az egyszerű szerkezet, az alacsony bemeneti energia, a hosszú élettartam, a könnyű moduláció és az alacsony ár előnyei miatt a félvezető lézereket széles körben használják az optoelektronika területén, és a világ országaiban nagyra értékelik őket.
A femtoszekundumos lézer egy "ultrarövid impulzusú fényt" generáló eszköz, amely csak ultrarövid, körülbelül egy gigamásodperces ideig bocsát ki fényt. A Fei a Femto rövidítése, a Nemzetközi Mértékegységrendszer előtagja, és 1 femtoszekundum = 1×10^-15 másodperc. Az úgynevezett pulzáló fény csak egy pillanatra bocsát ki fényt. A fényképezőgép vakujának fénykibocsátási ideje körülbelül 1 mikroszekundum, így a femtoszekundumos ultrarövid impulzusú fény csak idejének körülbelül egymilliárd részét bocsát ki. Mint mindannyian tudjuk, a fénysebesség 300 000 kilométer/másodperc (7 és fél kör a Föld körül 1 másodperc alatt) páratlan sebességgel, de 1 femtoszekundum alatt még a fény is csak 0,3 mikront halad előre.
Rao Yunjiang professzor, a Kínai Elektronikai Tudományos és Technológiai Egyetem Oktatási Minisztériumának Optikai szálérzékelési és Kommunikációs Kulcslaboratóriumának csapata a fő oszcillációs teljesítményerősítő technológián alapulva először valósított meg egy véletlenszerű multimódusú szálat. a kimenő teljesítmény >100 W és a foltkontraszt alacsonyabb, mint az emberi szem foltészlelési küszöbértéke. Az alacsony zajszint, a nagy spektrális sűrűség és a nagy hatékonyság átfogó előnyeivel rendelkező lézereket várhatóan a nagy teljesítményű és alacsony koherenciájú fényforrások új generációjaként fogják használni a foltmentes képalkotáshoz olyan jelenetekben, mint a teljes látómező és nagy veszteség.
A spektrális szintézis technológia esetében a szintetizált lézersugarak számának növelése a szintézisteljesítmény növelésének egyik fontos módja. A szálas lézerek spektrális tartományának bővítése segít növelni a spektrális szintézis lézer résznyalábok számát és növelni a spektrális szintézis teljesítményét [44-45]. Jelenleg az általánosan használt spektrumszintézis tartomány 1050½ ž1072 nm. A keskeny vonalszélességű szálas lézerek hullámhossz-tartományának 1030 nm-re való további kiterjesztése nagy jelentőséggel bír a spektrumszintézis technológia szempontjából. Ezért sok kutatóintézet a rövid hullámhosszú (1040 nm-nél kisebb hullámhosszúságú) keskeny vonalú, széles szálas lézereket vizsgálta. Ez a cikk elsősorban az 1030 nm-es szálas lézerrel foglalkozik, és kiterjeszti a spektrálisan szintetizált lézer részsugár hullámhossz-tartományát 1030 nm-re.
Copyright @ 2020 Shenzhen Box Optronics Technology Co., Ltd. – Kína száloptikai modulok, üvegszálas csatolású lézergyártók, lézerkomponensek beszállítói. Minden jog fenntartva.